23 research outputs found

    Development of fragment-specific osteopontin antibodies and ELISA for quantification in human metastatic breast cancer

    Get PDF
    Background: Osteopontin (OPN) is associated with human cancers, and circulating blood OPN may have diagnostic or prognostic value in clinical oncology. Methods: To evaluate OPN as a cancer biomarker, we generated and characterized five novel mouse monoclonal antibodies against the human full-length OPN (fl-OPN). Epitopes recognized by four antibodies (2C5, 2F10, 2H9, and 2E11) map to N-terminal OPN (aa1-166); one (1F11) maps to C-terminal OPN (aa167-314). These antibodies recognize recombinant and native OPN by ELISA and immunoblot, cross reacting with human and mouse OPN. Two of these novel antibodies ( 2F10 and 1F11) were used to develop a quantitative enzyme linked immunosorbent assay ( ELISA) for fl-OPN. Results: In comparison with commercially available ELISAs, our assay had high accuracy in measuring fl-OPN standards, and high sensitivity. Specifically, our ELISA has a linear dose response between 0.078 ng/ml- 10 ng/ml, with a sensitivity of 13.9 pg/ml. We utilized this assay to quantify fl-OPN in the plasma of healthy volunteers in comparison with patients with metastatic breast cancer. The average circulating plasma fl-OPN in healthy volunteers was 1.2 ng/ml, compared to 4.76 ng/ml in patients with metastatic breast cancer (p = 0.0042). Although the increase in fl-OPN in cancer patients is consistent with previous studies, the measured quantity varied greatly between all existing fl-OPN ELISAs. Conclusion: Because OPN is a complex molecule with diversity from alternative splicing, post-translational modification, extracellular proteolytic modification, and participation in protein complexes, we suggest that further understanding of specific isoform recognition of multiple OPN species is essential for future studies of OPN biomarker utility

    Ginsenoside Rg3 treats acute radiation proctitis through the TLR4/MyD88/NF-κB pathway and regulation of intestinal flora

    Get PDF
    ObjectivesThis study aimed to investigate the protective effect of ginsenoside Rg3 (GRg3) against acute radiation proctitis (ARP) in rats.MethodsWistar rats were randomly divided into control, model, dexamethasone-positive, GRg3 low-dose, GRg3 medium-dose, and GRg3 high-dose groups. The ARP rat model was established by a single 22-Gy irradiation of 6 MV) X-rays. The distribution and function of intestinal flora were detected using 16S rRNA high-throughput sequencing, rectal tissue was observed by hematoxylin and eosin (H&E) staining, the expression of interleukin 1β (IL-1β) and IL-10 inflammatory factors was detected by ELISA, and mRNA and protein expression of toll-like receptor 4 (TLR4), myeloid differentiation primary response 88 (MyD88), and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) were detected by RT-qPCR and Western blotting, respectively.ResultsGRg3 improved the symptoms of ARP in rats in a dose-dependent manner. The species distribution of intestinal flora in GRg3 rats was significantly different from that in ARP rats. These differences were more significant in the high-dose group, where the numbers of Ruminococcus, Lactobacillus, and other beneficial bacteria were significantly increased, whereas those of Escherichia, Alloprevotella, and other harmful bacteria were decreased. In addition, GRg3 was closely related to amino acid metabolism. After GRg3 treatment, the mRNA and protein expression of TLR4, MyD88, and NF-κB in rectal tissue was significantly down-regulated, and the level of downstream inflammatory factor IL-1β decreased, whereas that of IL-10 increased.ConclusionOur study indicated GRg3 as a new compound for the treatment of ARP by inhibiting the TLR4/MyD88/NF-κB pathway, down-regulating the expression of proinflammatory factors, thus effectively regulating intestinal flora and reducing inflammatory reactions

    Investigation and Analysis of the Current Situation of MOOC Learning among University Students in the Post-epidemic Period --Xi’an Jiaotong University as an Example

    No full text
    MOOC, whose full name is Massive Open Online Course, usually refers to the free and open online learning platform for the whole society. MOOC has received a lot of recognition from the academic community for its advantages of course diversity, platform openness and learning autonomy. Nowadays, MOOC has entered the universities and become a platform for students to learn professional knowledge. The importance of MOOC in academics cannot be ignored, and it is imperative to understand the views of college students as the main audience group and make corresponding suggestions to optimize knowledge absorption

    Research on the Multi-Objective Cooperative Competition Mechanism of Jinsha River Downstream Cascade Reservoirs during the Flood Season Based on Optimized NSGA-III

    No full text
    This paper analyzes the complex relationship among flood control, power generation and ecological maintenance for the four cascade reservoirs located on the lower reaches of the Jinsha River, China. A weighted flood control index is incorporated and a constraining method consisting of the combination of a constrained corridor and a penalty function is proposed. A comprehensive utilization model is established in this paper based on the objectives of flood prevention, power generation, and ecological maintenance of the downstream cascade reservoir group of the Jinsha River during flood season. In addition, based on the coalescent selection of reference points and vector angles, an optimized non-dominated sorting genetic algorithm (VA-NSGA-III) is proposed. The algorithm is applied to the constructed model to define the cooperative competition mechanisms among these three targets, resulting in a set of non-inferior scheduling schemes with more uniformity and better convergence acquired with VA-NSGA-III. The scheduling program shows that there is a non-linear competitive relationship between the power generation and ecological effects of the cascade reservoirs during flood season, and the competitiveness weakens as the power generation increases. Furthermore, when the flood control is at low risk, there exists a complex coupling relationship between competition and coordination of the flood control, power generation, and ecological maintenance. While the risk appears high, there is a competitive relationship between flood control and power generation, with flood control being in synergy with ecological maintenance

    The Warburg effect in human pancreatic cancer cells triggers cachexia in athymic mice carrying the cancer cells

    No full text
    Abstract Background Cancer cachexia is a cancer-induced metabolic disorder and a major cause of cancer-induced death. The constituents of cancer cachexia include an increase in energy expenditure, hepatic gluconeogenesis, fat lipolysis, and skeletal-muscle proteolysis and a decrease in body weight. The aetiology of cancer cachexia is unclear and may involve cancer-cell metabolism and secretion. In this study, we investigated whether the high glycolysis in cancer cells (the Warburg effect) triggers cachexia in athymic mice carrying pancreatic cancer cells. Methods First, we examined five human pancreatic cancer cell lines for glycolysis and cachectic-cytokine secretion. Consequently, MiaPaCa2 and AsPC1 cells were selected for the present study, because the glycolysis in MiaPaCa2 cells was typically high and that in AsPC1 cells was exceptionally low. In addition, both MiaPaCa2 and AsPC1 cells were competent in the secretion of examined cytokines. Next, we transplanted MiaPaCa2 and AsPC1 cells subcutaneously in different athymic mice for 8 weeks, using intact athymic mice for control. In another experiment, we treated normal mice with the supernatants of MiaPaCa2 or AsPC1 cells for 7 days, using vehicle-treated mice for control. In both models, we measured food intake and body weight, assayed plasma glucose, triglycerides, and TNF-α and used Western blot to determine the proteins that regulated hepatic gluconeogenesis, fat lipolysis, and skeletal-muscle proteolysis in the corresponding tissues. We also studied the effect of MiaPaCa2-cell supernatants on the proteolysis of C2C12 skeletal-muscle cells in vitro. Results The athymic mice carrying high-glycolytic MiaPaCa2 cells had anorexia and also showed evidence for cachexia, including increased hepatic gluconeogenesis, fat lipolysis and skeletal-muscle proteolysis and decreased body weight. The athymic mice carrying low-glycolytic AsPC1 cells had anorexia but did not show the above-mentioned evidence for cachexia. When normal mice were treated with the supernatants of MiaPaCa2 or AsPC1 cells, their energy homeostasis was largely normal. Thus, the cachexia in the athymic mice carrying MiaPaCa2 cells may not result from humeral factors released by the cancer cells. In vitro, MiaPaCa2-cell supernatants did not induce proteolysis in C2C12 cells. Conclusion The Warburg effect in pancreatic cancer cells is an independent aetiological factor for pancreatic cancer-induced cachexia

    Development of fragment-specific osteopontin antibodies and ELISA for quantification in human metastatic breast cancer

    No full text
    Abstract Background Osteopontin (OPN) is associated with human cancers, and circulating blood OPN may have diagnostic or prognostic value in clinical oncology. Methods To evaluate OPN as a cancer biomarker, we generated and characterized five novel mouse monoclonal antibodies against the human full-length OPN (fl-OPN). Epitopes recognized by four antibodies (2C5, 2F10, 2H9, and 2E11) map to N-terminal OPN (aa1-166); one (1F11) maps to C-terminal OPN (aa167-314). These antibodies recognize recombinant and native OPN by ELISA and immunoblot, cross reacting with human and mouse OPN. Two of these novel antibodies (2F10 and 1F11) were used to develop a quantitative enzyme linked immunosorbent assay (ELISA) for fl-OPN. Results In comparison with commercially available ELISAs, our assay had high accuracy in measuring fl-OPN standards, and high sensitivity. Specifically, our ELISA has a linear dose response between 0.078 ng/ml-10 ng/ml, with a sensitivity of 13.9 pg/ml. We utilized this assay to quantify fl-OPN in the plasma of healthy volunteers in comparison with patients with metastatic breast cancer. The average circulating plasma fl-OPN in healthy volunteers was 1.2 ng/ml, compared to 4.76 ng/ml in patients with metastatic breast cancer (p = 0.0042). Although the increase in fl-OPN in cancer patients is consistent with previous studies, the measured quantity varied greatly between all existing fl-OPN ELISAs. Conclusion Because OPN is a complex molecule with diversity from alternative splicing, post-translational modification, extracellular proteolytic modification, and participation in protein complexes, we suggest that further understanding of specific isoform recognition of multiple OPN species is essential for future studies of OPN biomarker utility.</p

    Frequency-tunable microwave quantum light source based on superconducting quantum circuits

    No full text
    A non-classical light source is essential for implementing a wide range of quantum information processing protocols, including quantum computing, networking, communication and metrology. In the microwave regime, propagating photonic qubits, which transfer quantum information between multiple superconducting quantum chips, serve as building blocks for large-scale quantum computers. In this context, spectral control of propagating single photons is crucial for interfacing different quantum nodes with varied frequencies and bandwidths. Here a deterministic microwave quantum light source was demonstrated based on superconducting quantum circuits that can generate propagating single photons, time-bin encoded photonic qubits and qudits. In particular, the frequency of the emitted photons can be tuned in situ as large as 200 MHz. Even though the internal quantum efficiency of the light source is sensitive to the working frequency, it is shown that the fidelity of the propagating photonic qubit can be well preserved with the time-bin encoding scheme. This work thus demonstrates a versatile approach to realizing a practical quantum light source for future distributed quantum computing
    corecore